(5x+2)=(x^2-3x+6)

Simple and best practice solution for (5x+2)=(x^2-3x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x+2)=(x^2-3x+6) equation:



(5x+2)=(x^2-3x+6)
We move all terms to the left:
(5x+2)-((x^2-3x+6))=0
We get rid of parentheses
5x-((x^2-3x+6))+2=0
We calculate terms in parentheses: -((x^2-3x+6)), so:
(x^2-3x+6)
We get rid of parentheses
x^2-3x+6
Back to the equation:
-(x^2-3x+6)
We get rid of parentheses
-x^2+5x+3x-6+2=0
We add all the numbers together, and all the variables
-1x^2+8x-4=0
a = -1; b = 8; c = -4;
Δ = b2-4ac
Δ = 82-4·(-1)·(-4)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{3}}{2*-1}=\frac{-8-4\sqrt{3}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{3}}{2*-1}=\frac{-8+4\sqrt{3}}{-2} $

See similar equations:

| 3*x+6.4=3.9 | | x+(2x)+(3x-20)=196 | | 4j−j=12 | | 7x+4+5x-3+2x+5=180 | | 3.1g+10=1.1g+16 | | 10x-13.5=5x+9 | | 3x+(-4)=2+5 | | -45=-y/8 | | 1/4x=5/7 | | 20=-1/4x+12 | | 6x+4=8x−12 | | 2n=250 | | -6s+5s-2s+s+-3s=5 | | –7n=–5n−4 | | -6+5s-2s+s+-3s=5 | | 3*t+6.4=3.9 | | (k+8)(k-2)(k-7)=0 | | 10s-6s=4 | | 10x^2+20x-30=0* | | 12x+2=12x+5 | | 14g-7g-4g+2g=10 | | 6s-5s+s=2 | | 10z-9z-z+2z-z=17 | | -4+3x-1=2x+12x | | 10z-9z+2z-z=17 | | 9x(2x+4)=0 | | 11k-6k+3k-4k=20 | | –9v−7=–8v | | 4n+n+n=12 | | 2(5x-6)=9 | | 6r=7r+3 | | 11d-9d=10 |

Equations solver categories